The intestinal microbiota in the mechanism of obesity and atherosclerosis

Udział jelitowej flory bakteryjnej w mechanizmie otyłości i miażdżyca

Department of Clinical Physiology, Medical Center of Postgraduate Education, Warszawa
Head of Department: prof. Andrzej Beręsewicz, MD, PhD

Key words
intestinal microbiota, obesity, atherosclerosis, phosphatidylcholine, L-carnitine, flavonoids

Słowa kluczowe
jelitowa flora bakteryjna, otyłość, miażdżyca, fosfatydylocholina, L-karnityna, flawonoidy

INTRODUCTION

Since 2008 there has been an international research project called Human Microbiome Project analyzing the biological roles of commensalistic bacteria settled in different areas of human body. This and other research suggest involvement of intestinal bacterial flora (IBF) in the mechanisms of different diseases, including such civilization diseases like obesity (1-8) and arteriosclerosis (9, 10). In this context it was proved that the bacterial inhabitants of the human gastrointestinal tract break down various alimentary composition and that the products of this process may have beneficial or unbeneficial biological effects. There are three kinds of substances important to obesity and arteriosclerosis development:

1. Short chain fatty acids, which are produced in the disintegration of complex polysaccharides and take part in the development of obesity.
2. Trimethylamine (TMA), which is a product of lecithin and L-carnitine bacterial metabolism and which, after oxygenation by the hepatic enzyme into TMAO, has a pro-arteriosclerotic effect.
3. Protocatechuic acid (PCA), which is a product of plants flavonoids bacterial metabolism and which has an anti-arteriosclerotic effect.

The current hypothesis is that there are individual differences in the IBF composition and that some quantitative and qualitative proportion of IBF have beneficial and others unbeneficial effects. It is widely known that lean
and obese people have different kinds of IBF. In this article I present IBF content and biology as well as its role in development of obesity and atherosclerosis.

THE COMPOSITION AND BIOLOGY OF INTESTINAL BACTERIAL FLORA

Alimentary tract of a newborn mammal is sterile. With birth the process of alimentary tract colonization by bacteria begins. In humans the more or less final composition of IBF is settled when the child is introduced on the same diet as adult family members (11). The amount of intestinal bacteria in an adult human is estimated to 10^{13}-10^{14} microorganisms (~1 kg of bacteria), which means that we have ~10 times more bacteria that our own cells in the intestines only (12). Human IBF (but also mice’s) contain mainly anaerobic bacteria belonging to five phyla: *Firmicutes* (64%), *Bacteroidetes* (23%), *Proteobacteria*, *Actinobacteria* i *Verrucomicrobia*, consisting of totally 1000-1500 bacterial species (13). In human intestine there are also viruses, protozoons, archaeons and fungi (14).

There are individual differences in IBF composition. These may be quantitative differences (in the percentage of different phyla/species in the whole amount of bacteria) and qualitative (in the amount of IBF species). The differences in IBF species composition are determined by: geographical area of origin, environmental hygiene conditions and genetics (in uniovular twins the differences in IBF composition are minimal) (1). The species composition of the human intestinal microbiota is also determined by: (a) prematurity – in premature infants there were mainly anaerobes (*Klebsiella*, *Enterobacter*) and *Bifidobacterium*, *Enterobacteriaceae* and *Lactobacillus* bacteria occur much later than in children born in term (15); (b) the kind of delivery – natural vs by cesarean section (16); (c) the kind of feeding – in children fed with breast milk there are mainly *Bifidobacterium* bacteria and in children fed with modified milk IBF is more differentiated (16, 17); (d) feeding habits in adult period, e.g. “carnivores” vs vegetarians/vegans (9, 18, 19); (e) undergoing antibiotic therapy (20); (f) past bariatric operation (21); (g) pregnancy (22-24) and (h) ageing (25).

IBF has numerous beneficial biological effects, including intestinal peristalsis stimulation, influences the development of intestinal villi and rebuilding of epithelium and has also positive effect on maturation and activity of alimentary tract immunological system (26). Lately there have been numerous reports on the role of IBF in development of different pathologies.

BACTERIAL ORIGINS OF OBESITY

There are the following arguments for the engagement of IBF in obesity development:

1. Germ-free mice (deprived of intestinal microflora) are thinner than mice with IBF even if they are fed in the same way. It partly is a result of the fact that germ-free individuals do not have intestinal villi developed, which may impair intestinal absorption. Another reason is that IBF takes part in digestion of complex polysaccharides (like fiber), which are not digested by the host’s alimentary tract. The products of bacterial fermentation of these substances are short-chain fatty acids (acetic acid, lactic acid, propionic acid, butyric acid), which when absorbed are the additional source of energy. In humans, IBF “delivers” about 80 to 200 kcal per day, which is 4-10% of the daily energy demand (2). The same fatty acids are, additionally, agonists of specific G protein-coupled receptors – GPR41 and GPR43. These receptors are also known as the free fatty acids receptors – FFAR3 and FFAR2. Their activation causes increased intestinal absorption and adjusting fat tissue metabolism into increased fat accumulation (27).

2. Infection of control mice group with IBF from the obese mice (mice ob/ob deprived of the leptin gene) caused faster weight gaining of control mice, apart from the fact that both groups were fed in the same way (2). At the same time it was proved that in IBF of ob/ob mice the percentage of *Firmicutes* bacteria was lowered and *Bacteroidetes* bacteria was increased in comparison with control mice (28).

3. In humans the composition of IBF also correlates with obesity. It was proved that in obese people, in comparison with control group, IBF is richer in *Firmicutes* bacteria and poorer in *Bacteroidetes* bacteria and that this composition normalizes within a year of weight-loss diet application (18). In Meta-HIT research in Denmark including 169 obese patients and 123 lean patients there was a group with a large amount of genes in their IBF (which means a lot of species in the IBF) and a group with little amount of genes (which means little species in IBF). It occurred that less species differentiation of IBF is a risk factor of obesity occurrence, insulin resistance, dyslipidemia and pro-inflammatory phenotype (29).

INVolVEMENT OF BACTERIAL PRODUCTS OF PHOSPHATIDYLCHOLINE AND L-CARNITINE DISINTEGRATION IN ARTERIOSCLEROSIS MECHANISM

Phosphatidylcholine (lecithin) is present in diet containing eggs, milk, liver, red meat, poultry, shell fish and fish. The main source of L-carnitine is red meat. Phosphatidylcholine and L-carnitine molecules contain choline and choline-like trimethylamine (TMA) respectively. Final product of phosphatidylcholine and L-carnitine digestion by IBF is TMA, which is next oxygenated by a hepatic enzyme FMO3 (*flavin monooxygenase* 3) to pro-arteriosclerotic oxygenated TMAO (*trimethylamine N-oxide*) (30-32) (fig. 1). Arguments for the TMAO involvement in the arteriosclerosis and/or cardio-vascular disease development are:

1. Metabolomic research in the group of 1876 patients attending routine cardiological appointment showed that in their serum, among thousands of other micromolecular substances there are three derivatives of phosphatidylcholine - choline, TMAO and betaine. At the same time it was proved that increased concentration of these substances was a risk factor
of coronary artery disease and other forms of cardiovascular disease occurrence (10).

2. In mice (10) and in healthy volunteers (33) fed with phosphatidylcholine rich diet (phosphatidylcholine stress test) a transient increase in TMAO level was observed. This effect was prevented by antibiotic therapy, sometime after antibiotic exclusion the phosphatidylcholine stress test again resulted in the increase of TMAO in the serum, which proves the role of IBF in TMAO production. Also other research proved that antibiotic therapy is effective in lowering TMAO level in blood (33-35).

3. In mice fed with choline, TMAO or betaine rich diet there was an increased expression of scavenger receptors (CD36 and SRA) which take part in pro-arteriosclerotic accumulation of oxidized LDL by macrophages and accelerate the development of atherosclerosis. All these effects were prevented by antibiotic therapy.

4. The ability to produce TMAO correlates with cardiovascular risk. Patients (n = 4007) referred to routine cardiologic appointment it was proved that the level of L-carnitine allowed predicting the increased risk of cardiovascular disease occurrence and in people with an increased TMAO also the risk of cardiovascular events (death, heart attack, brain stroke) in a three-year observation (33).

5. In the study involving 2595 patients who reported to routine cardiologic appointment it was proved that the level of L-carnitine allowed predicting the increased risk of cardiovascular disease occurrence and in people with an increased TMAO also the risk of cardiovascular events (death, heart attack, brain stroke) in a three-year observation (33).

6. IBF takes part in L-carnitine metabolism into TMAO. Similarly to phosphatidylcholine also diet including red meat resulted in the increase in the level of TMAO (and L-carnitine) in human and mice blood as well as accelerated the development of atherosclerosis in mice. These effects were prevented by antibiotic therapy and then reactivated after discontinuing antibiotic therapy (9).

7. Feeding habits, and thus the species composition of IBF, decide about the intensity of L-carnitine metabolism to TMAO. Vegetarians and vegans, unlike “carnivores” had significantly lower control concentration of TMAO in blood and did not show increase in TMAO concentration in L-carnitine stress test. At the same time it occurred that carnivores and vegetarians/vegans had significantly different IBF composition (9). This last result was confirmed also by another research team (36). In addition, it was proved that diet enriched in L-carnitine changed the species IBF profile in mice, which resulted in increased production of TMA and TMAO as well as accelerated the development of atherosclerosis These effects were not present in germ-free mice (9).

PRODUCTS OF BACTERIAL FLAVONOID FERMENTATION VS ARTERIOSCLEROSIS

Flavonoids are a part of plants polyphenols and are quite differentiated. They are widespread in the plant kingdom where play an important role protect against ionizing radiation and to provide coloration (plant pigments) function as antioxidants and natural substances protecting plants against pathogens. They are a daily component of our diet and their daily intake is ~1 g (37). Flavonoids, particularly anthocyanins, have a confirmed anti-arteriosclerotic and preventive effect in the cardiovascular disease (37-44). These substances are very weakly absorbed in the alimentary tract and, in case of anthocyanins, it was showed that only 0.1% of their amount present in the diet is absorbed (43). At present it is known that not the anthocyanins themselves have the anti-arteriosclerotic effect but their well absorbed metabolite protocatechuic acid (PCA) (43). Anthocyanins at first are bio-transformed into Cyanidin-3-O-beta-glucoside, which is next metabolized by bacteria present in the large intestine to above mentioned PCA (fig. 2).

Recent research on ApoE-/- mice (the strain susceptible to arteriosclerosis development) showed that (40):

1. Cyanidin-3-O-beta-glucoside transformation into PCA does involve IBF (the transformation is prevented by antibiotic therapy and it is not present in germ-free animals).

2. Clinically observed PCA concentrations (but not Cyanidin-3-O-beta-glucoside) increase reversion transport of cholesterol from macrophages by stimulation of reversion transport transporters ABCA1 and ABCG1 expression. The mechanism is that PCA suppresses expression of micro-RNA-10b, which is a repressor of ABCA1 and ABCG1 expression.

3. Diet enriched in Cyanidin-3-O-beta-glucoside suppresses development of arteriosclerosis and eradication of IBF with antibiotics reduces this effect.
The intestinal microbiota in the mechanism of obesity and atherosclerosis

These research implication is that IBF, dependent of the species composition, may either be the source of anti-atherosclerotic flavonoid biodegradation products or it may deprive the organism of their beneficial activity.

CONCLUSIONS

IBF takes part in biodegradation of diet elements and by easily absorbed products of this degradation influences the host’s organism. Whether this influence is beneficial or not depends on individual species differentiation of IBF. In this article I present IBF involvement in the mechanism of obesity and arteriosclerosis as an example of this problem. Discussed data create new directions of treatment of these diseases, which are set to health-oriented modification of IBF species composition. At present, the tested trials of such modifications include application of so called prebiotics and/or probiotics. However, clinical benefits of such therapy were not yet confirmed.

BIBLIOGRAPHY

16. Reedy S, Mirza SH, Grefte JS et al.: Intestinal microbial metabolism of phenylalanine and tyrosine influences the host’s organism. Whether this influence is beneficial or not depends on individual species differentiation of IBF. In this article I present IBF involvement in the mechanism of obesity and arteriosclerosis as an example of this problem. Discussed data create new directions of treatment of these diseases, which are set to health-oriented modification of IBF species composition. At present, the tested trials of such modifications include application of so called prebiotics and/or probiotics. However, clinical benefits of such therapy were not yet confirmed.

CONCLUSIONS

IBF takes part in biodegradation of diet elements and by easily absorbed products of this degradation influences the host’s organism. Whether this influence is beneficial or not depends on individual species differentiation of IBF. In this article I present IBF involvement in the mechanism of obesity and arteriosclerosis as an example of this problem. Discussed data create new directions of treatment of these diseases, which are set to health-oriented modification of IBF species composition. At present, the tested trials of such modifications include application of so called prebiotics and/or probiotics. However, clinical benefits of such therapy were not yet confirmed.