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S u m m a r y

During the last 85 years our knowledge on the plasma membranes evolved from the lipid bilayer to the current fluid but 
structured model of dynamic and heterogeneous domains. Detergent resistant membranes (DRMs) are not equivalent to 
lipid rafts but turned out helpful in our recognition of the complex structure of membranes. Lipid rafts received a definition, 
got smaller but highly dynamic, and recently were made visible by modern, sophisticated, optical techniques. Some of our 
published and unpublished results concerning gangliosides, DRMs and lipid raft are briefly discussed.
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S t r e s z c z e n i e

W ciągu ostatnich 85 lat znajomość budowy błon komórkowych ewoluowała od dwuwarstwy lipidowej do aktualnego mo-
delu błony będącej mozaiką dynamicznych, heterogennych domen. Nierozpuszczalna w detergentach frakcja błon (DRMs) 
nie jest jednoznaczna z tratwami lipidowymi, ale okazała się pomocna w poznaniu złożonego charakteru błon komórkowych. 
Tratwy lipidowe zostały zdefiniowane i okazały się bardzo niewielkimi i dynamicznymi strukturami, widzialnymi przy użyciu 
skomplikowanych metod mikroskopowych. Niektóre z naszych publikowanych i niepublikowanych wyników dotyczących 
gangliozydów, DRM i tratw lipidowych zostały krótko omówione.

Słowa kluczowe: oporna na detergenty frakcja błon, tratwy lipidowe, gangliozydy

At the beginning of June 2011, there were over 770 
review articles in Medline under the heading lipid rafts 
and about 140 under lipid rafts in disease. Thus to write 
a detailed article on the subject would not be particu-
larly useful. Therefore we take this opportunity to give a 
prospective Reader a general view on the subject and 
to discuss in retrospect our published results (1-5) and 
some unpublished observations (6) on detergent re-
sistant membranes, light membrane fraction, and lipid 
rafts.

Model of lipid membranes

Cell membranes are composed of non-covalently 
bound lipids and proteins whose weight ratio range 
from about 7:3 for myelin (7) to 1:4 for inner mitochon-
drial membrane (8). About 30% of mammalian genome 
are coding membrane proteins (9). From several lipid 
classes known to occur in eukaryotic cells (10), most 

of mammalian membrane lipids belong to sterols, glyc-
erophospholipids, and sphingolipids. The only sterol 
in animal cell membranes is cholesterol, but glycero-
phospholipids and sphingolipids are represented by 
an over a thousand molecular species, differing in the 
structures of their head groups, fatty acid, and sphin-
gosine residues (11). The progress in studies on lipi-
domics are likely to expand this list (12, 13). In spite of 
their structural diversity, all membrane lipids share a 
common property: they are amphiphatic i.e. have hy-
drophilic and hydrophobic groups or residues. When 
studied in Langmuir trough this property orients mem-
brane lipids with hydrophilic groups imbedded in water 
while the hydrophobic parts protrude into air. At the end 
of 1924 Gorter and Grendel (14) compared the surface 
of a monolayer occupied by lipids in Langmuir trough 
with the surface of erythrocytes used for extraction. 
Through ingenuity and luck [mutually compensating 
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mistakes (15)] they concluded that membrane lipids 
form a bilayer. In the bilayer model of the membrane 
hydrophobic residues of lipids in two layers face each 
other thus avoiding contact with water, while the hydro-
philic groups on each side are oriented towards it. Ex-
cept for archea (archeabacteria) (16) the bilayer turned 
out to be an universal form of a membrane structure.

The fluid mosaic model

It took another 10 years to present a model where 
not only lipids, but also proteins and their spatial re-
lations with the membrane were considered (17). 
In the Danielli-Dawson model of membrane structure 
the lipid core was on both sides covered by a continu-
ous layers of proteins. Later on, Robertson refined this 
model introducing mucoproteins on the exoplasmic and 
unconjugated proteins on the cytoplasmic side of the 
lipid bilayer membrane (18). Even as late as 1969 the 
Danielli-Dawson model was considered valid (19). 
In 1970 Frye and Eddidin (20) presented results on 
intermixing of surface antigens after formation of 
mouse-human heterokaryons. They concluded that 
membrane allows diffusion of surface protein antigens 
therefore is fluid. The other important observation on 
the properties of membrane proteins was discovered 
by Bretscher (21) that the major erythrocyte glycopro-
tein is not bound to but, in contradistinction to the previ-
ous models, spans the cell membrane. Based on these 
and their own observation Singer and Nicholson (22) 
presented the fluid mosaic model of cell membranes. 
Singer and Nicholson divided proteins into integral 
(transmembrane) and peripheral. In contradistinction 
to integral, the peripheral proteins do not span the 
membrane but are bound to it through electrostatic 
and hydrogen bonds. It was before the discovery of 
glycophosphatidylnositol anchored proteins (GPI-AP) 
of the exoplasmic layer (23) and variously lipidated 
proteins of the cytoplasmic layer (24, 25) which are an-
chored to the bilayer through hydrophobic and van der 
Waals interactions (26). The proteins in this model can 
diffuse moving freely within the fluid lipid bilayer thus 
the membrane is a highly dynamic structure. The mod-
el turned out to be upgradable accommodating new 
data (27, 28) however Singer and Nicholson did not re-
ally consider the occurrence of domains. Fluidity is not 
equivalent to chaos and any membrane structure or 
interaction that would limit it would promote formation 
of domains, that is the appearance of membrane areas 
differing from the rest of it.

Dynamic, yet structured (29) or more 
mosaic than fluid (30)

Plasma membranes are asymmetric structures. 
Apart from strictly controlled by cells, different distri-
bution of lipids between exoplasmic and cytoplasmic 
halves of a bilayer (31, 32) membranes show lateral 
heterogeneity that is, consist of domains. Domains 
differ widely in properties such as size, half life, and 
composition affecting their functions. Thus in polar-

ized cells we have apical and basolateral membranes, 
which in turn, may contain thousands of microdomains 
(33). One of such microdomains are, or for non- be-
liever, can be lipid rafts. Even though the concept of 
lipid domains in membranes are much older (34), the 
roots of the raft theory should be traced to the hypoth-
esis of van Meer and Simons (35) explaining the pref-
erential sorting of GPI-AP (these proteins do not have 
a transmembrane domain) and glycosphingolipids to 
the apical membrane of canine kidney cells. As pro-
posed by these authors, GPI-AP in the Golgi appara-
tus, a subcellular structure where sphingolipids are 
synthesized (36), form domains with glycosphingolip-
ids. These domains, stabilized by hydrogen bonds, are 
subsequently exocyticaly transported as a whole, to 
the plasma membrane. At the moment it is difficult to 
assess to what extent this hypothesis is universal (33) 
yet recently it gained support from the observations of 
Klemm et al. (37) who discovered immunoisolated ves-
icles enriched in ergosterol and sphingolipids released 
from trans Golgi network.

Later on two independent observations lain founda-
tion for the raft hypothesis: the recognition of liquid or-
dered phase in artificial lipid membranes (38-40), and 
the isolation of detergent resistant membranes (41).

Without bringing in details (42), important but be-
wildering for a nonprofessional reader, we should 
consider that lipids in artificial membranes are in three 
forms of order or phases (43, 44). At low temperatures 
the acyl chains of glycerophospholipids and sphingo-
lipids are maximally extended, packed and ordered. 
The  membrane is in the solid ordered so, or the gel 
phase. At high temperature the acyl chains show unre-
strained movement around C-C bonds. The membrane 
is in the liquid disordered ld phase. Now the molecules 
can move around their axis as well as in the “plane” 
of the membrane (43, 44). These two forms of order 
are separated by the main transition temperature. This 
temperature looks sharp and narrow for membranes 
made of a single phospholipid but becomes broad 
and poorly defined for membranes prepared from lipid 
mixtures containing cholesterol, thus indicating the 
appearance of the third phase, i.e. liquid ordered lo. 
The lo phase depends on cholesterol (45). The smooth 
and rigid structure of cholesterol, which has an “affin-
ity” for long, saturated chains of phospholipids, locates 
in their vicinity thus preventing their tight packing yet 
maintaining, to some extent, their extended confor-
mation (43, 44). Phospholipid molecules in lo phase 
have their translational mobility no more than 2-3 fold 
reduced when compared to ld (46). To compare, phos-
pholipids in so phase are almost a thousand fold less 
mobile than in the ld phase (44). On the other hand, 
cholesterol is a condensing agent limiting the fluidity of 
phospholipids promoting both ways the lo phase (47).

Detergent resistant membranes

Detergents are amphiphatic molecules. Due to their 
reversed cone shape, in water detergents occur as mi-
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celles or monomers (48). When added to cell or artificial 
membrane suspensions in water solutions, detergent 
monomers incorporate the membrane (48, 49). After 
a while, the concentration of detergent molecules are 
so high that the lipids cannot support the membrane 
structure and instead a mixed micelles are formed (49, 
50). Since detergents, such as Triton X-100 are heavier 
than water, it should be possible to separate the mixed 
micelles of solubilized membranes from the insoluble 
fraction. In 1992 Brown and Rose (41) prepared at 4°C 
the Triton X-100 extract of epithelial cells and subjected 
it to density gradient centrifugation. As compared with 
total membrane, the detergent insoluble fraction recov-
ered at a 5%/35% sucrose interface was enriched in 
GPI-AP, glycosphingolipids, sphingomyelin, and cho-
lesterol. The GPI-AP acquired their insolubility in the 
detergent after leaving the Golgi apparatus (41).

Since then, DRM fraction has been isolated from all 
animal cells (51), plant cells containing sterols (52, 53) 
and recently from sterol synthesizing bacteria (54, 55). 
The procedure of detergent extraction of cells followed by 
density gradient centrifugation resulting in the separation 
of lipid rich detergent insoluble fraction has become wide-
ly used for, perhaps, two reasons: It is simple to perform 
and allows the performer to draw conclusion about basic 
properties of membranes and their functions.

DRMs were instrumental to the formulation by 
Simons and Ikonen of the raft hypothesis (56) and lat-
er, observations with this membrane fraction were fre-
quently cited in the first review article on lipid rafts and 
signal transduction (57). Initially, the experiments with 
model membranes demonstrated that membranes in 
the lo phase are less detergent soluble than in the ld 
phase (58, 59). Thus DRMs isolated from cells could 
correspond to the area of the membrane in the lo 
phase. This convincing assumption was challenged by 
the observations of Heerkloz (60). He reported, that ad-
dition of Triton X-100 to a uniform membrane prepara-
tion caused separation of lipids into patches of lo and 
ld phases. However. on the basis of earlier experiments 
(61) Brown considers effects described by Heerkloz 
not to have greater effect (51). Likewise, Garner at al. 
(62) who studied the solubilization of membranes, did 
not detect domain formation after the addition of a de-
tergent.

After almost 20 years from the publication of Brown 
and Rose (41) a few observations about DRMs seem 
(almost) certain. Thus phospholipids (51, 63) and gan-
gliosides (2) with long chain, saturated fatty acid resi-
dues prefer DRMs [but compare paper by Pike et al 
(64)].

Peripheral GPI-AP owe their DRMs association to 
their lipid anchor (51, 65), a relation to the lo phase fur-
ther strengthened by exchange of GPI-AP unsaturated 
acyl residues by saturated ones (66). Proteins associ-
ated with the cytoplasmic half of the bilayer such as G 
proteins, Ras proteins, Src-family kinases, depend on 
palmitoylation and myristoylation (25, 51). So far there 
is not a single signal in the transmembrane protein 

structure directing it to DRMs (51, 67). Recently Leven-
tal at al. (68) provided data suggesting that palmitoyla-
tion regulates raft (and DRM) affinity of transmembrane 
raft proteins.

Membrane fractions isolated as DRMs have two 
common properties: relative insolubility in a detergent 
reflecting primarily the lipids, lo phase, and low buoy-
ant density resulting from a higher lipid to protein ratio. 
Otherwise the fraction is heterogeneous (69). This is 
an effect of several factors: inherent heterogeneity of 
the membrane as shown by Brügger et al. (70), use of 
different detergents, various detergent concentration 
(71-73), and reconstitution of solubilized membrane 
components during centrifugation (74). Nevertheless, 
some proteins, for instance those involved in signaling, 
the primary function of lipid rafts (56), are enriched in 
DRMs (75, 76).

Apart from extraction with detergents, homogeniza-
tion in 0.5M Na2CO3 (77) or other buffers (78), were 
used for density gradient fractionation of membranes 
(79). The relative value of these procedures should be 
evaluated by the user (80, 81).

Lipid rafts

Almost 10 years after being given a name (56) lipid 
rafts received a definition, so everybody would know 
what we are talking about (82). Thus “membrane 
rafts are small (10-200 nm), heterogeneous, highly 
dynamic, sterol and sphingolipid-enriched domains 
that compartmentalize cellular processes. Small rafts 
can sometimes be stabilized to form larger platforms 
through protein-protein and protein-lipid interactions”. 
This  definition has important consequences. First, it 
differentiates DRMs (83) from membrane structures 
studied in vivo by gentle methods preserving their in-
tegrity. Second, it draws our attention to ceramide and 
sphingomyelin enriched microdomains (84, 85), glyco-
synapses (86) as well as non-raft domains (87). Third, 
is demonstrates the growing importance of biophysical 
and microscopic approaches in experiments on mem-
brane rafts (88).

After about 10 years since the formulation of raft hy-
pothesis (56) and raft engagement in signal transduc-
tion (57) our perception of these membrane structures 
changed considerably. Due to the work of a number 
of researches, especially Sharma et al. (89), Kusumi 
et al. (90) and Hancock (91, 92) rafts became smaller 
and highly dynamic structures. How these small rafts 
can work was demonstrated by Suzuki et al. (93, 94) 
by single particle tracing, commented recently by 
Fedoryszak-Kuśka et al. (67).

How come that the cells, lipid rafts are so small 
while in artificial membranes the lo phase forms a µm 
domains separated from the ld phase? An interesting 
answer came from an experiment of Yethiraj and Weis-
shaar, performed in silico on the effect of obstacles on 
formation of large lipid domains (95). These obstacles 
would be the cytoskeleton-bound transmembrane pro-
teins. Calculations of Yethiraj and Weisshaar agree with 
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observations of Baumgart et al. (96) who detected plas-
ma membrane separation into large, fluid lo/ld -like do-
mains in giant plasma membrane vesicles devoid of cy-
toskeleton. The lo/ld -like domains were also detected in 
plasma membrane spheres, again a plasma membrane 
fragment without a cytoskeleton (97). The importance of 
cytoskeleton for raft formation is underscored by results 
reported by Goswami et al. (98). They detected that for-
mation of nanoclusters of GPI-AP depends on cortical 
actin. Likewise, GM1 and GM3 ganglioside cluster seg-
regation also depended on the status of actin cytoskel-
eton (99). It is obvious, that tendency of lipids to form lo 
domains is one of many forces ruling the formation and 
activity of membrane domains.

Seeing is believing. This rather simplistic view is chal-
lenged by the size of lipid rafts below 200 nm which 
evades the resolving power of a conventional micro-
scope. This limitation was overcome by Hell and col-
laborators (100). They discovered, by stimulated emis-
sion depletion far-field fluorescence nanoscopy, that 
fluorescently labeled sphingolipids, and GPI-AP, but 
not glycerophospholipids, form microdomains. These 
microdomains are sensitive to cholesterol depletion. 
Thus membrane rafts became less illusive yet preserv-
ing their elusive charm (101).

GM1, the general marker for detergent 
resistant membranes

GM1 ganglioside, or sialosylgangliotetraosyl cer-
amide, is the most highly cited glycosphingolipid. Its 
over 5000 citations compare well with 1730 citations 
for GM3 and outclass its disialo derivative GD1a with 
280 citations. GM1 is an important molecule active in 
the plasma membrane as well as nuclear envelope 
(102,103) yet its popularity result from being a marker 
for both DRMs and lipid rafts. The widespread use of 
GM1 for this purpose results from its highly specific 
reaction with cholera toxin (104, 105). In membranes 
GM1 ganglioside can make hydrogen bonds, the basis of 
the sorting hypothesis of Simons and van Meer (35), take 
part in electrostatic interactions through its ionized sialic 
acid residue, and van der Waals bonds with its ceramide 
moiety. Gangliosides, like the remaining glycosphingolip-
ids are characterized by enormous diversity of their oligo-
saccharide chains as well as ceramide residues (106).

The objective of our experiments was to find out 
if, and to what extent, the ceramide residue of GM1 
moleculule determines its association with DRMs (2). 
We have prepared through partial synthesis (107) first 
fourteen (2) and later another three (6) molecular spe-
cies of GM1, replacing its fatty acid residue with fatty 
acids differing in chain length and saturation. We also 
labeled GM1s with tritium. Following an established 
procedure, we inserted these GM1s into the mem-
branes of HL-60 cells and studied their distribution 
between different membrane fractions separated by 
density gradient centrifugation.

What was new but partly expected: the length and 
saturation of the ceramide residue had a decisive ef-

fect on the occurrence of GM1s in DRMs. Later on we 
extended these studies to three new GM1s: with 2D 
hydroxystearic, α-linolenic (three double bonds) and 
docosahexaenoic acid (six double bonds). When com-
pared, the 2D hydroxystearic did not differ from stearic 
acid containing GM1. Likewise GM1 with α-linolenic 
acid had similar distribution as GM1 with monounsatu-
rated fatty acid while the GM1 with docosahexaenoic 
acid residue was detected in DRMs in the lowest pro-
portion (6).

What was unexpected: cross linking with cholera tox-
in (CT) placed all GM1s, irrespective of their ceramides, 
into the DRMs. Also unexpected was an observation, 
that with saturated, long chain ceramides, depletion of 
cholesterol did not significantly decrease their recov-
ery in DRMs (2).

A few years later these results are not surprising. 
As already mentioned, DRMs are a heterogeneous 
fraction. Not only it was possible to obtain DRMs after 
cholesterol depletion, but also glycolipid enriched do-
mains withstood, though not in all cells, such treatment 
(108).

At variance to our observations is a recent publica-
tion of Ewers et al. (109). These authors studied the 
dependence of SV40 virus infection on the ceramide 
structure of its receptor: GM1. We do not question the 
elegant experiments with SV40 virus but cannot agree 
that the ceramide moiety of GM1 by the same mecha-
nism affects the membrane penetration by cholera 
toxin. We assume, in accordance with earlier work by 
Fishman et al. (110, 111), that binding of cholera toxin 
results in translocation of the complex into lo phase of 
the membrane. The next step might be similar as de-
scribed for the virus.

Apart from detergent extraction we tried to determine 
the effect of GM1 ceramide on its association with the 
light membrane fraction prepared through sonication 
in 0.5M Na2CO3 (112). No correlation between the lo 
preferring GM1 ceramide structure and enrichment in 
this fraction could be detected (3). Moreover, extensive 
sonication decreased recovery not only of gangliosides 
but also of GPI-anchored proteins (3).

Do gangliosides and GPI-anchored proteins 
compete for the same microdomains?

These experiment were a reflection of an earlier work 
by Friedrichson and Kurzchalia (113) who discovered 
an easy dimer formation of GPI-AP when cells were 
treated with a cross linker. This observation suggested 
that GPI-AP are very close to each other forming a clus-
ters or a microdomain. Our interest was heightened 
by observations that gangliosides seem to disperse 
these domains (114, 115). Since we had available ex-
ogeneous gangliosides preferring lo or ld phases we 
wanted to know if the competition between GPI-AP 
and ganglioside reflects the ceramide structure of the 
latter. We decided to use Jurkat cells and study two 
GPI-AP: CD55 and CD59. Our attempts at cross linking 
of these proteins were unsuccessful (6). There are at 
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least two explanations. First, in experiments described 
so far (113-115) recombinant, not the native GPI-AP, 
were used. Second, GPI-AP in Jurkat cells could be 
present mostly as monomers (89), and not as homo 
polymers which is a condition for dimer formation after 
cross linking.

Photoreactive and fluorescent 
ganglioside derivatives

Photoaffinity labeling (116) and the use fluorescent 
sphingolipid derivatives (117) are well recognized 
methods to study membrane structure. However, both 
procedures are tinted by an original sin: introduction 
of a photoreactive or fluorescent probe changes the 
structures of a molecule. We prepared both aryl azide 
(1, 118) or diazirine (4) substituted ganglioside deriva-
tives. After insertion into the cell membrane the aryl az-
ide substitute ones could not be detected in DRMs (6). 
The diazirine derivatized GM1 and GM3 gangliosides 
were in about 40% recovered in DRMs. However, when 
the latter were used for photoaffinity labeling of Jurkat 
cells, under conditions where lamellipodium and uro-

pod are formed (119), no difference in the photolabel-
ing pattern of proteins could be detected (6). On the 
basis of experiments described by Gomez-Mouton 
such a difference could be expected. Using the same 
GM1 derivative as described by us, Palestini et al. (120) 
detected tubulin as the major photolabeled protein 
while we did not.

As already mentioned, gangliosides exhibit great 
structural variability. We find it surprising that azi-
dosalicylic acid derivatized GM1 and GM3, not de-
tected in DRMs, differed in their protein photoaffinity 
pattern (1) while the same gangliosides, diazirine 
substituted, detected in DRMs in 40% or more, did 
not (6). Thus it seems possible that non raft pro-
teins can differ in their association with ganglioside 
derivatives based on the structure of their oligosac-
charide chains.

Fluorescent gangliosides were successfully used to 
detect raft-like domains in kangaroo rat kidney cells 
(100) and more recently in erythrocyte membranes 
(121). Our AlexaFluor conjugated 3H labeled GM1s 
await experimental evaluation (5).
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