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S u m m a r y

Reactive oxygen species (ROS) are formed as a consequence of cell metabolism but can also get into cells from external 
sources. Hydrogen peroxide (H2O2), singlet oxygen (1O2) and hydroxyl radical (•OH) are produced in many physiological 
processes such as respiration in the mitochondria and oxidation in the peroxisomes. In thyroid H2O2 participate in hormone 
synthesis. ROS induce DNA damages that are implied in mutagenesis, tumorigenesis and other human diseases. Among 
these DNA lesions 8-oxoG is one of the most mutagenic. The main pathway to repair 8-oxoG and other oxidized bases is 
base excision repair (BER). The efficiency of BER when it comes to eliminating oxidative DNA lesions may be a risk factor 
for thyroid cancer and other diseases development. Molecular mechanisms responsible for impaired DNA repair have been 
widely studied and include polymorphisms of repair genes, their transcriptional activation/down-regulation, post-translational 
modifications and possibly other factors. The data presented here and literature reports demonstrate that increased oxidative 
stress, DNA damage and somatic mutation rates are contributing factors to the development of thyroid cancers. Moreover, 
alterations in DNA repair mechanisms, including polymorphisms of repair genes (OGG1, APE1 and XRCC1) may be linked to 
the risk of thyroid malignant transformation.
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S t r e s z c z e n i e

Reaktywne formy tlenu (ROS) powstają endogennie, w wyniku metabolizmu komórkowego, jak również dostają się do 
komórki ze środowiska zewnętrznego (źródła egzogenne). Nadtlenek wodoru (H2O2), tlen singletowy (1O2) czy rodnik hy-
droksylowy (•OH) powstają w wielu procesach fizjologicznych, takich jak oddychanie w mitochondriach czy utlenianie w 
peroksysomach. W tarczycy H2O2 uczestniczy w syntezie hormonów. ROS powodują powstawanie modyfikacji DNA, wśród 
których 8-oxoG jest najbardziej mutagenną. Uszkodzenia DNA odgrywają istotną rolę w mutagenezie, kancerogenezie i roz-
woju innych chorób u ludzi. Główną drogą naprawy utlenionych zasad, w tym 8-oxoG, jest naprawa przez wycinanie zasad 
(ang. Base Excision Repair – BER). Zaburzenia w naprawie DNA mogą być czynnikiem ryzyka rozwoju wielu chorób, w tym 
raka tarczycy. Badania nad molekularnymi mechanizmami odpowiedzialnymi za zaburzenia naprawy DNA obejmują polimor-
fizmy genów naprawy, regulację ich transkrypcji, modyfikacje potranslacyjne oraz inne czynniki. Dane literaturowe wskazują, 
że stres oksydacyjny, uszkodzenia DNA oraz zwiększona częstotliwość mutacji mogą być czynnikami przyczyniającymi się 
do rozwoju raka tarczycy. Ponadto, zmiany w systemach naprawy DNA, w tym występowanie polimorfizmów genów napraw-
czych (OGG1, APE1 i XRCC1) może również wiązać się z ryzykiem transformacji nowotworowej w tarczycy.

Słowa kluczowe: tarczyca, stres oksydacyjny, uszkodzenia oksydacyjne, 8-oksy-7,8-dihydroguanina (8-oxoG), naprawa 
DNA, polimorfizm genu, XRCC1, OGG1

Oxidative stress and reactive oxygen species

Most organisms living on Earth are entirely depen-
dent on the presence of oxygen in the atmosphere. 
However, the by-products of oxygen metabolism are 
toxic to living organisms. Reactive oxygen species 
(ROS) in the cell are produced both during normal cel-
lular metabolism or inflammatory reactions and under 

the influence of external factors like γ, X and UV radia-
tion, biotransformation of dietary chemicals and some 
diet components, e.g. transient metal ions (1). Normal 
cellular metabolism seems to be the primary source of 
endogenous ROS. An imbalance between the forma-
tion of ROS and antioxidant defense leads to increased 
reactive oxygen species generation and oxidative 
stress development (2). ROS are radical molecules 
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containing oxygen, for example superoxide (O2
•–) and 

hydroxyl radical (•OH), or non-radical molecules, such 
as hydrogen peroxide (H2O2) and singlet oxygen (1O2), 
which may be converted into radical forms. The most 
reactive ROS, hydroxyl radicals, are responsible for 
oxidation and fragmentation of nucleic acids, proteins 
and lipids. They are produced in the metal-catalysed 
Haber-Weiss and Fenton reactions mediated by the 
transition metal ions such as iron and the copper (3). 
Iron is a cofactor for many biological reactions and is 
an important component of metabolism in various tis-
sues and organs, including the thyroid. Iron deficiency 
may affect thyroid hormone synthesis by decreasing 
the activity of the heme-dependent thyroid peroxidase 
(TPO). In addition, low iron levels reduce deiodinase 
activity, i.e. it slows down the conversion of T4 to T3, 
and also causes a raise in circulating concentrations 
of thyroid stimulating hormone (TSH) (4). With higher 
levels of TSH and low free T4 and T3 levels hypothy-
roidism occurs. Iron overload, on the other hand, may 
promote the persistence of harmful labile iron, which 
can catalyze the generation of potentially carcinogenic 
DNA adducts in the cell (5).

The role of H2O2 in THE thyroid

H2O2 production was found in vivo in many intracellu-
lar structures e.g. mitochondria, endoplasmic reticulum 
and peroxisomes. A high concentration of hydrogen 
peroxide was also observed in activated phagocytes, 
spermatozoids, bacteria and even in exhaled air (6). 
In the thyroid gland H2O2 is produced by one or two 
NADPH oxidases (Duox1/2) at the apical membrane of 
thyrocytes and it participates in hormone biosynthesis. 
To synthesize T3 and T4 hormones, the thyroid takes 
up iodine and incorporates it into the precursor of the 
hormones – thyroglobulin. Iodination of thyrosyl resi-
dues on thyroglobulin requires high concentrations of 
H2O2 as well as oxidized iodine, which is generated by 
the thyroid peroxidase (TPO) (7). For the TPO func-
tion properly H2O2 is necessary. It helps to stabilize 
the enzyme by autocatalytic covalent heme binding 
to the TPO molecule, which positively affects TPO ac-
tivity (8). On the other hand, an excess of H2O2 may 
inhibit TPO activity and consequently inhibit thyroid 
hormone synthesis (9). Because H2O2 and iodine are 
co-substrates in hormone synthesis, changes of iodine 
concentrations affect the concentration of H2O2. In vitro 
and in vivo studies demonstrated that iodide inhibits 
the generation of H2O2 in the thyroid (10, 11). Produc-
tion of H2O2 is moreover stimulated through the cAMP 
cascade by the thyrotropin (TSH), which increases the 
expression of genes important for hormone synthesis 
(e.g. TPO) (12).

H2O2 has various effects in the cell and it may en-
hance cell metabolism through diverse mechanisms. 
Besides that H2O2 acts as an oxidant, and also induces 
oxidative stress and apoptosis (13) working as an intra-
cellular messenger (14). ROS-derived signals regulate 
growth, proliferation, differentiation and death of the 

cell (15-17). It has been demonstrated that in thyroid 
H2O2-mediated cytotoxicity appears at low H2O2 con-
centrations and leads to cell apoptosis or less frequent-
ly to necrosis (15). Moreover in vivo studies suggest 
that cytotoxic reaction to oxidative stress may depend 
on the functional state of the thyroid gland (18).

Despite the fact that hydrogen peroxide does not re-
act directly with components of DNA, it is a precursor 
to highly reactive hydroxyl radical (•OH), hypochlorite 
(ClO−) and singlet oxygen (1O2). Therefore H2O2 may 
facilitate a mutagenic process and DNA modification 
leading to cancer development (19). A thyrocyte which 
generates a great amount of H2O2 is a long-lived cell and 
that allows it to accumulate mutations in DNA (20). Con-
sequently, oxidative stress has been suggested to con-
tribute to the pathogenesis of thyroid cancer (21, 22).

Defense against the action and effects 
of ROS

An antioxidative defense systems, that protect from 
the formation and effects of reactive oxygen species, 
function in all living organisms. In the cell the defense 
against the destructive effects of ROS works on the 
three levels.

The first level of the system prevents the formation 
of excessive quantities of ROS. The main component 
of this level are proteins that bind transition metal ions 
which thus inhibits Fenton reactions. Iron ions are bound 
by ferritin, transferrin and lactoferrin, copper ions by ce-
ruloplasmin. Metallothioneins bind a number of different 
metal ions, as well as albumin, which non-specifically, is 
capable of binding many metal ions (23).

The second defense level neutralizes ROS. This 
system includes antioxidant enzymes such as super-
oxide dismutase (SOD), glutathione and ascorbate 
peroxidases (GPX, APX1), and glutathione transferase. 
The other elements of this protection level are small 
molecule antioxidants that work as direct or indirect 
free radical scavengers: glutathione, ascorbic acid, 
cysteine​​, tocopherols (vitamin E), retinoids (vitamin A 
analogs), uric acid, carotenoids, bilirubin, ubiquinol, 
and even glucose and pyruvate (3, 24). The above an-
tioxidative protectors have been found in thyroid gland, 
e.g. GPX and TPO and are upregulated during the syn-
thesis of thyroid hormones (25). There is also evidence 
that GPX3 which affects the H2O2 concentration directly 
interferes with hormone synthesis (26).

The third level of the defense is the elimination of 
ROS harmful effects on the most important cellular 
macromolecule – DNA. Oxidative DNA adducts are re-
paired by enzymes of excision repair systems, which 
will be described in subsequent chapters.

DNA damage caused by oxygen free 
radicals attack

ROS reactions with DNA cause the most dangerous 
consequences for multicellular organisms. The •OH 
radical molecule is one of the ROS that is extremely 
reactive in the oxidation of cellular constituents such 
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as nucleic acids, proteins and lipids. •OH interactions 
with DNA may lead to considerable damage, such as 
oxidized bases, base and sugar lesions, abasic sites, 
DNA-DNA intrastrand adducts, single or double strand 
breaks and DNA-protein cross-links (2, 27-29).

Among modified DNA products generated by the free 
radicals a significant part are pyrimidine- and purine-de-
rived lesions (30). Some of these modified DNA bases 
have considerable potential to affect the integrity of the 
genome (31). The main products of oxidatively dam-
aged DNA include 8-oxo-7,8-dihydroadenine (8-oxoA); 
8-oxo-7,8-dihydroguanine (8-oxoG) and its deoxy-
nucleoside equivalent, 8-oxodG; 5,6-dihydroxy-5,6-di-
hydrothymine (thymine glycol, Tg) and ringopened le-
sions: 4,6-diamino-5-formamidopyrimidine (FapyA) and 
2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG) 
(32-34).

Mutagenic 8-oxoG and carcinogenesis

Guanine in the cellular nucleotide pool and also as 
a component of the nucleoside, nucleotide or polynu-
cleotide (DNA, RNA) is especially susceptible to oxida-
tion by ROS. Its oxidation results in the formation of 
the modified base known as 8-oxo-7,8-dihydroguanine 
(8-oxoG). 8-oxoG is the most widely studied DNA le-
sion and the best marker of oxidative DNA damage 
due to its mutagenic nature and its high sensitivity to 
immunological detection. The presence of 8-oxoG resi-
dues in DNA leads to G > T transversions (35-37) and 
one of the consequences could be point mutations. 
Several model studies confirmed that external oxida-
tive factors such as induce G > T transversions in DNA 
and the overall frequency of point mutations correlate 
with the level of 8-oxoG (38, 39). Studies on 8-oxoG 
are focused on finding a link between the presence of 
mutations in the DNA molecule and malignant transfor-
mation of the cell. Elevated levels of 8-oxoG in the DNA 
were detected in cancer tissues of different origins (40, 
41). Moreover experimental data suggests that 8-oxoG 
occurrence reflects the early changes in the process of 
carcinogenesis. The significant role of 8-oxoG in car-
cinogenesis may also be supported by the fact that in 
tumor tissues G > T transversions are the most com-
mon point mutation within the p53 tumor suppressor 
gene and other genes associated with tumor develop-
ment (42).

In thyroid tissues, an antibody of 8-oxoG showed the 
strongest staining near the lumen of thyrocytes where 
H2O2 is produced and the staining in the follicular thy-
roid cells was stronger than in spleen, lung and liver 
cells (43). That might indicate a higher load of oxida-
tively modified DNA in thyroids, possibly caused by 
high H2O2 concentrations. Indeed the rate of spontane-
ous mutations found in the thyroid gland was 8-10-fold 
higher compared to liver and stands out from many 
other tissues (43, 44). Moreover, human thyroid carci-
nomas demonstrate hypermutability compared with tu-
mors in general (45). In addition among the spectrum 
of somatic mutations in thyroid tumors one of the most 

common is G > T transversion induced by oxidative 
factors. That may suggests the contribution of oxida-
tive stress and oxidative base adducts in thyroid can-
cer development (46).

Repair of oxidative DNA damage

Eukaryotic organisms have a number of repair mech-
anisms, which are specialized in the removal of various 
types of DNA damage. These include direct repair, ex-
cision repair and the recombination repair system (47). 
An excision repair consists of three pathways: base ex-
cision repair (BER), nucleotide excision repair (NER) 
and mismatch repair (MMR).

The main mechanism repairing oxidized DNA bases 
is BER, which can be divided into five steps. The first 
step is an excision of the damaged base by the specif-
ic DNA glycosylase and formation of an apurinic/apy-
rimidinic (AP) site. In humans the enzyme that initiates 
the BER pathway is 8-oxoguanine DNA glycosylase 
– OGG1. The second step is a cleavage of the phos-
phodiester bond at the AP site by AP-endonuclease 
(APE1) or AP-lyase. In the next phase chemical groups 
interfering with gap filling and ligation are removed. 
The last two steps are gap filling and ligation (48).

BER consists of two distinct pathways: the short and 
the long path. In the short path BER only one nucle-
otide is excised, while in the long patch 2-8 nucleotides 
are removed along with the damaged nucleotide (48).

The excision rate of oxidative DNA lesions may be 
affected by proteins engaged in the repair mechanism 
e.g. APE1, XRCC1 or PARP1 (ADPRT). The first step of 
the BER pathway, recognition and excision of the dam-
aged catalyzed by OGG1, may be greatly influenced 
by the second BER pathway enzyme, APE1 (AP endo-
nuclease). In vitro APE1 stimulates excision of 8-oxoG 
up to 400 fold by increasing enzyme turnover of dam-
aged DNA (49). The next protein XRCC1 (X-ray cross-
complementing group 1), which is a platform protein 
recruited to the site of damage by several DNA gly-
cosylases and stays until ligation, regulates consecu-
tive stages of the BER. PARP1 (polyADP ribose poly-
merase), which binds to free DNA ends and protects 
them against degradation, participates in chromatin 
relaxation and modulates binding of repair proteins to 
the site of damage by interaction with poly(ADP-ribose) 
chains (50).

It is postulated that the efficiency of BER in eliminat-
ing oxidative DNA lesions may be a risk factor for the 
development of cancer and other diseases. The mo-
lecular mechanisms responsible for impaired DNA re-
pair are widely studied and include polymorphisms of 
repair genes, their transcriptional activation/down-reg-
ulation, post-translational modifications and possibly 
other factors (34).

Polymorphisms of BER genes and thyroid 
disorder

Several polymorphisms of DNA repair genes respon-
sible for excision of 8-oxoG are known. Their presence 
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in the human genome has been linked to the risk of 
developing specific types of cancers, thyroid included 
(51). It has been suggested that polymorphisms in re-
pair genes may be associated with differences in the 
repair efficiency of DNA damage (51).

A number of polymorphic changes have been de-
scribed in the OGG1 gene, which encodes DNA-glyco-
sylase excising a damaged base from DNA. The major 
OGG1 polymorphism is the C to G transversion in the 
exon 7, which results in Ser to Cys change in codon 
326 in the protein (52, 53). It has been reported that 
polymorphic OGG1-Cys326 protein has a lower enzy-
matic activity in comparison to common OGG1-Ser326 
protein. This findings suggest that individuals homozy-
gous for Cys326 might accumulate more mutations 
under conditions of oxidative stress (53-55). Moreover, 
the OGG1-Cys326 allele was suggested to be asso-
ciated with increased risk of lung, stomach, prostate, 
nasopharyngeal, esophageal and cervical cancers (51, 
56-61), although not for breast and colon cancers (62, 
63). This OGG1-Cys326 variant was also detected in 
differentiated thyroid tumors, however there was no 
significant difference between the control group and 
the cancer patient group (64). Whether the linkage 
of the OGG1 Ser326Cys polymorphism to increased/ 
/decreased cancer risk is due to decreased enzyme 
activity remains to be elucidated. The contradictory 
results concerning the correlation between OGG1 
polymorphism and 8-oxoG incision activity in human 
leukocytes have been published (65, 66). The less fre-
quent OGG1 polymorphic variants: Gly12Glu, Arg46-
Gln, Ala85Ser, Arg131Gln, Arg154His, Arg169Gln, 
Ser232Thr and Gly308Glu were found in human lung, 
kidney and gastric tumors (67, 68). However due to the 
rare occurrence of these alterations in the population 
their relation to thyroid cancers has not been estab-
lished. Among these polymorphisms only two OGG1-
46Gln and OGG1-154His were demonstrated to pos-
sess defective catalytic capacities (69).

The OGG1 gene has been mapped to chromosome 
3p26.2 (70), a region showing loss of heterozygosity 
(LOH) in various human cancers (58, 71, 72). In both 
Hashimoto thyroiditis (HT) and papillary thyroid carci-
noma (PTC) a high incidence of OGG1 LOH has been 
reported. On the contrary there was no OGG1 LOH in 
benign goiter specimens. These findings may suggest 
that PTC and longstanding chronic inflammation in HT 
could result from altered repairs to oxidative DNA dam-
age (73). The excision activity of OGG1 glycosylase 
may depend on several protein interactions among 
partners of the BER pathway, e.g. XRCC1 and APE1, 
therefore further studies are needed to determine 
whether the polymorphisms of OGG1 is a significant 
risk factor for cancer development.

The second enzyme in the BER system is AP en-
donuclease (APE1). Several sequence variants of the 
APE1 gene were identified. The most frequently studied 
are Gln51His, Ile64Val and Asp148Glu. The presence 
of Ile64Val was associated with decreased lung cancer 

risk (74). Asp148Glu polymorphism was related with 
hypersensitivity to ionizing radiation (76). No associa-
tion, however, between occurrence of the Asp148Glu 
polymorphism and thyroid or other cancer develop-
ment has been demonstrated (76).

The X-ray cross-complementing group 1 (XRCC1) 
gene is located on chromosome 19q13.2 and encodes 
a scaffold protein which interacts with a complex of 
DNA repair enzymes. Three polymorphisms at the 
conserved sequences in the XRCC1 gene have been 
identified: Arg194Trp, Arg280His and Arg399Gln (77). 
These polymorphisms, involving an amino acid change 
at evolutionarily conserved regions, which interact with 
the OGG1 and APE1 (78), could alter the XRCC1 func-
tion. Although the importance of XRCC1 protein for 
the effectiveness of BER was demonstrated in model 
studies (79), no information is available on the XRCC1 
polymorphisms and 8-oxoG incision rate in humans. 
It was demonstrated that the presence of XRCC1 poly-
morphisms are associated with the development and 
progression of differentiated thyroid cancers (DTC), 
however the data is inconsistent (80-83).

Replacement C>T in the exon 6 causes Arg to Trp 
amino acids substitution at codon 194 in protein. Both 
heterozygous Arg194Trp and homozygous Trp194Trp 
polymorphic genotypes are showed to increase sus-
ceptibility to DTC (80). Furthermore, the XRCC1-194Trp 
variant may interact with polymorphic ADPRT-762Ala 
variant (polyADP ribose polymerase, PARP1), which 
also participates in the BER pathway. Simultaneous 
occurrence of these polymorphisms is reported to fur-
ther enhance susceptibility to DTC and regional lymph 
node (LN) metastasis (81). On the other hand, the 
polymorphic XRCC1-Trp194 variant was linked with 
a decreased risk of thyroid nodules and the common 
XRCC1-Arg194 variant was associated with the occur-
rence of thyroid nodules and nodules related to radia-
tion exposure of the thyroid gland (82).

The XRCC1 Arg399Gln and Arg280His variants have 
been widely investigated for their function and involve-
ment in tumorigenesis. The results, however, are con-
troversial rather than conclusive (84). Arg280His poly-
morphism result from G>A substitution in exon 9 and 
Arg399Gln is generated from the replacement of G>A 
in exon 10 of XRCC1 gene. Existing data on the asso-
ciation of XRCC1 Arg280His polymorphism occurrence 
with differentiated thyroid cancer development are 
contradictory. No associations were observed in pop-
ulations from Taiwan, Russia and Belorussia (82, 83) 
in contrast with Spanish data which showed a slight 
increase of DTC risk for carriers of His280 allele (64). 
The results of the Arg399Gln polymorphism vary in dif-
ferent cancers for populations with different ethnicities. 
It has been reported that XRCC1-Gln399 variant may 
affects the DTC development. Cases with Gln399 al-
lele demonstrated decreased risk of DTC among the 
patients from Chernobyl and survivors of Hodgkin dis-
ease with radiotherapy-related malignancies (80, 85). 
On the contrary no association between Arg399Gln 



954

Justyna Janik, Barbara Czarnocka

polymorphisms and thyroid tumors occurrence was 
observed in Taiwan and Spain, as is in the populations 
not exposed to high doses of ionizing irradiation (64, 
81). These results suggest that the XRCC1 polymor-
phisms, in particular Arg399Gln, may modify the effects 
of environmental exposure and consequently influence 
the risk of DTC.

An extensive search for single nucleotide polymor-
phisms revealed that cancer risk may be increased 
in individuals bearing multiple genes polymorphisms. 
These alterations if present separately have no or little 
effect on the frequency of cancer development. For ex-
ample the simultaneous presence of XRCC1 Arg194Trp 

and ADPRT (PARP1) Val762Ala polymorphisms in-
crease the risk of thyroid cancer and regional LN me-
tastasis (81).

In summary, ROS may act at several stages of 
malignant transformation by the induction of per-
manent DNA sequence changes. The presented 
data suggest that increased oxidative stress, DNA 
damage, and somatic mutation rates are contribut-
ing factors to the development of human cancers 
including thyroid. Moreover, alterations in DNA re-
pair mechanisms, such as polymorphisms of repair 
genes, may be associated with the risk of thyroid 
malignant transformation.
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